### The Crystallographic Analysis of InMn<sub>3</sub>, a New Form of *y*-Brass Structure with a P Cell

By J. K. Brandon, Hwang Su Kim and W. B. Pearson

Department of Physics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

(Received 2 January 1979; accepted 9 April 1979)

#### Abstract

Single-crystal X-ray diffraction experiments have shown that the alloy of composition  $InMn_3$  has a  $\gamma$ brass-type structure with space group P43m and roomtemperature cubic cell constant  $a = 9.420 \pm 0.004$  Å. At the relatively large atomic-radius ratio  $R_{\rm In}/R_{\rm Mn} \simeq$ 1.3 the In atoms occupy nearly completely the cubooctahedral (CO) sites of one of the two clusters of 26 atoms which make up the 52-atom primitive unit cell (P cell). In atoms also partially occupy the octahedral (OH) sites of the same cluster. This distribution of the large and small constituent atoms represents a newly discovered type of atomic ordering for P-cell y-brass structures, which gives an improved packing fraction for a large radius ratio when the larger In atoms order in OH and CO sites rather than inner tetrahedral (IT)and CO sites, and furthermore the ordering in a P cell reduces the number of In-In contacts. Previously published powder intensity data for the hightemperature  $\gamma$ -Cu–In phase, which also has a relatively large radius ratio of  $R_{\rm In}/R_{\rm Cu} \simeq 1.3$ , is shown to be consistent with calculations for a model structure with a P cell and with large In and small Cu atoms adopting the InMn, type of ordering.

#### Introduction

Our previous work on  $\gamma$ -brasses has led to an understanding of why certain  $\gamma$ -phase alloys stabilize with ~9 Å cubic body-centred (I) Bravais lattices, others with ~9 Å cubic primitive (P) lattices, some with ~18 Å cubic face-centred (F) lattices and a few with rhombohedral (R) lattices derived from the cubic form. Among each of these varieties, we have examined various factors which affect the atomic ordering and structural stability (Pearson, Brandon & Brizard, 1976; Booth, Brandon, Brizard, Chieh & Pearson, 1977; Brandon, Brizard, Pearson & Tozer, 1977; Brandon, Pearson, Riley, Chieh & Stokhuyzen, 1977). These previous studies led to predictions of the atomic ordering in  $\gamma$ -InMn<sub>3</sub> and  $\gamma$ -Cu-In where the radius ratios are very disparate ( $R_{In}/R_{Mn} \simeq 1.3$ ).

0567-7408/79/091937-08\$01.00

Previous X-ray investigations of these two phases by powder diffraction methods [Zwicker (1950) and Aoyagi & Sugihara (1962) on  $\gamma$ -InMn<sub>3</sub>; Reynolds (1952) on  $\gamma$ -Cu–In] identified them as  $\gamma$ -brass-type structures but provided no information about their lattice types, their space groups, or their atomic ordering.

The unique ordering in a P cell which we report here for our single-crystal work on  $InMn_3$  prompted our attempts to see how well a similar P-cell ordering model would fit the high-temperature  $\gamma$ -Cu–In powder diffraction data of Reynolds (1952).

#### Experimental

Appropriate amounts of 99.999% pure In (supplied by A. D. Mackay Ltd) and spectroscopically pure Mn (supplied by Johnson Matthey Chemicals Ltd) were used to prepare a mixture with 41.06 wt% In. The mixture was evacuated in a quartz tube to  $4 \times 10^{-4}$  Pa; the tube was sealed, and the sample was heated to 823 K for 3 h to allow molten In to completely mix with the Mn. The sample was annealed for 20 d at 1093  $\pm$  10 K, and rapidly quenched to room temperature in a water bath. By using this method it was expected from the In-Mn phase diagram (Hansen, 1958) that a mixed alloy containing phases InMn<sub>3</sub> and In would result, from which one might obtain InMn<sub>3</sub> single crystals. The resulting ingot was black on its outer surface, but when broken it was found to be hollow with bright silver-coloured crystals on the inner surfaces. Portions of the inner part of the sample were fragmented for use in powder X-ray diffraction investigations and in a search for InMn<sub>3</sub> single crystals. Other portions of the ingot were studied later by powder diffraction to check for the presence of any other phases (Kim, 1979).

The powder diffraction patterns of material from the inner part of the ingot could be indexed as a mixture of In and a cubic material with the known cell constant of In $Mn_3$ . Small fragments were then selected from the sample and a single crystal of In $Mn_3$  was detected by inspection of Weissenberg and precession diffraction photographs. Zero- and upper-level Weissenberg © 1979 International Union of Crystallography

photographs were indexed on the basis of a cubic cell with approximate cell constant 9.42 Å and with [ $\bar{1}10$ ] as rotation axis (Ni-filtered Cu  $K\bar{\alpha}$  radiation,  $\lambda =$ 1.54178 Å). These measurements confirmed that InMn<sub>3</sub> had been obtained since there was reasonable agreement with previously reported cubic cell constants for this phase (9.44 Å, Aoyagi & Sugihara, 1962; 9.43 Å, Zwicker, 1950). Of immediate interest from the single-crystal diffraction photographs was the observation of weak but easily visible reflections of type h +k + l = odd, indicating that InMn<sub>3</sub> has a primitive (P) cubic lattice rather than the body-centred (I) lattice of the archetype Cu<sub>3</sub>Zn<sub>8</sub>  $\gamma$ -brass structure.

The single-crystal diffraction patterns also showed the intensity relationships of Laue symmetry class m3mwith no systematically absent reflections, allowing possible space groups P432 (No. 207), P43m (No. 215) and Pm3m (No. 221) (International Tables for Xray Crystallography, 1969). The likely space group was taken as P43m subject to confirmation by structure analysis.

Cell-constant and relative-intensity measurements were made using a General Electric XRD-6 singlecrystal automated diffractometer equipped with a scintillation counter and a pulse-height analyser. The sample was aligned with [110] along the  $\varphi$  axis of the diffractometer and the cell constant was refined by a least-squares fit to the measured  $2\theta$  values of 10 reflections (Zr-filtered Mo  $K\bar{\alpha}$  radiation,  $\lambda = 0.71069$ Å). The same diffractometer and radiation were used in a  $\theta$ -2 $\theta$  scan mode to collect relative intensity data. A scan speed of  $2^{\circ}$  min<sup>-1</sup> and a scan range in  $2\theta$  of (1.80 +  $0.86 \tan \theta$ ° were used, with 10 s background measurements taken at the beginning and end of each scan. Several reflections were measured as standards and were repeated every 100 reflections to check uniform conditions of the crystal and X-ray source. 2129 reflections with  $2\theta < 70^{\circ}$  (Mo  $K\bar{a}$  radiation) in the first octant were measured.

| Ta | ble | 1. | Crystal | ' data f | or | InMn <sub>3</sub> |
|----|-----|----|---------|----------|----|-------------------|
|----|-----|----|---------|----------|----|-------------------|

| Crystal system                                                | Cubic                                    |
|---------------------------------------------------------------|------------------------------------------|
| Space group                                                   | $P\bar{4}3m$ ( $T^{1}_{\sigma}$ No. 215) |
| Cell constant, $a$ (Å) (293 K)                                | $9.420 \pm 0.004$                        |
| Cell volume, $V(\dot{A}^3)$                                   | 835·9 ± 1·1                              |
| Measured density, $D_m$ (Mg m <sup>-3</sup> )                 | $7 \cdot 11 \pm 0 \cdot 32^*$            |
| Atoms per unit cell, N                                        | $51.2 \pm 2.3^{++}$                      |
| Calculated density for $N = 52$ , $D_x$ (Mg m <sup>-3</sup> ) | 7.22                                     |
| Absorption coefficient (Mo $K\bar{a}$ ) (mm <sup>-1</sup> )   | 23.44                                    |

\* This density measurement and standard deviation come from numerous attempts on different samples taken from the central portions of the ingot. Powder photographs have shown that such samples would contain a mixture of phases.

<sup>†</sup> This N value is calculated using the measured  $D_m$  and a values assuming the composition InMn<sub>3</sub>. The refined model contains N = 52 atoms as for the archetype  $\gamma$ -brass and  $D_x$  refers to this 52-atom model at the same composition. The data were corrected for absorption using a locally modified version of the program *NRC-3* (originally written by F. R. Ahmed and P. Singh, Ottawa) run on the University of Waterloo IBM 360 Model 75 computer. The sample volume was approximately  $1.87 \times 10^{-3}$  mm<sup>3</sup>. The linear absorption coefficient and other crystal data are summarized in Table 1.

The 2129 reflections were next corrected for background, Lorentz, and polarization effects and symmetry-equivalent reflections were averaged using the program *DATAPREP*. There remained 428 independent intensities, of which 6 were negative and were either treated as zero or excluded from the later refinements. Errors from counting statistics and from background corrections were combined to derive standard deviations in each intensity value.

### Solving and refining the structure

Since a structure related to that of other  $\gamma$ -brass phases was expected, a trial set of atomic coordinates was derived based on the cluster model for  $\gamma$  phases. In this model, clusters of 26 atoms each with 43m symmetry pack together as pseudo-atoms in a body-centred cubic arrangement. For y-brasses with the body-centred cubic lattice (I cell), two crystallographically identical clusters occur per unit cell of edge  $\sim 9$  Å.  $\gamma$ -Brasses with the  $\sim 9 \text{ Å } P$  cell are composed of two different clusters, A and B, centred respectively at 000 and  $\frac{111}{222}$  in the cubic cell. Each 26-atom cluster is composed of: (a) 4 atoms usually in contact comprising an inner tetrahedron (IT); (b) 4 atoms forming an outer tetrahedron (OT) such that each OT atom is usually in contact with 3 IT atoms; (c) 6 atoms forming an octahedron (OH) such that each OH atom is close to 2 IT and 2 OT atoms; and (d) 12 atoms forming a cubooctahedron (CO) such that each CO atom is close to 1 IT, 1 OT, 2 OH and 2 CO atoms. By using this basic arrangement approximate coordinates can be generated for a starting-model structure.

Various models for atomic ordering of In and Mn among the eight possible *P*-cell crystallographic sites were proposed and tested. Some models were based on previously known *P*-cell  $\gamma$  phases such as Al<sub>4</sub>Cu<sub>9</sub> where the larger atomic species occupy *IT* sites of the *A* cluster and *CO* sites of the *B* cluster. Other models were attempted with ordering schemes arising from predictions based on packing fractions and other concepts. These models had large In atoms primarily on *OH* and *CO* sites. In addition, because of possible variations from the expected InMn<sub>3</sub> composition, several models were attempted with slight composition changes. For example, Aoyagi & Sugihara (1962) reported a narrow single-phase field near InMn<sub>3</sub> and our own density measurements could easily allow variations between the compositions  $In_{12}Mn_{40}$  (23.07 at.% In,  $D_x \simeq 7.10 \text{ Mg m}^{-3}$ ) and  $In_{14}Mn_{38}$  (26.90 at.% In,  $D_x \simeq 7.34 \text{ Mg m}^{-3}$ ).

All trial models were refined using the full-matrix crystallographic least-squares program LSTSQR. Scattering factors for In and Mn based on the Thomas-Fermi-Dirac statistical model and corrections for anomalous scattering with Mo K $\overline{\alpha}$  radiation were taken from International Tables for X-ray Crystallography (1968). The least-squares program refined the scale factor, extinction-correction parameter, atomic coordinates and individual isotropic temperature factors for each atom. The function minimized was  $\sum w(|F_o| - |F_c|)^2$ . All 422 reflections were used with unit weights (w = 1) for the initial tests of model structures.

Table 2 shows results for a few ordering models of particular interest. Model 1, which resembles the *P*-cell ordering of Al<sub>4</sub>Cu<sub>9</sub> with the available large In atoms in *AIT* and *BCO*, is not appropriate because of its large  $R_w$  and large resulting temperature factor for *AIT* { $R_w \equiv [\sum w(|F_o| - |F_c|)^2 / \sum w|F_o|^2]^{1/2}$ , summations over all reflections}. Model 5 which uses only the *BCO* sites for large In atoms refined to a more reasonable  $R_w$  value than did model 1, and final temperature factors in model 5 suggested possible improvements by placing

fewer In atoms in BCO and adding some In atoms to BOH. Model 12 with In only in CO sites (but with different proportions in ACO and BCO to give a P cell) had a promising  $R_w$  value perhaps because of similarity to model 5 with large In concentration in BCO, but the fact that ACO had the largest isotropic temperature factor (B) led us to believe that CO sites in the second cluster could not actually accommodate much In. Here again, as in model 5, the B value of the BOH site remained the smallest. Model 2 has been included in the table to show the results typical of models where an appreciable fraction of the In atoms are removed from the BCO site. In this case with the remaining In atoms placed in AOH the refinement has adjusted for an excess of electrons by the large increase in the temperature factor B of AOH. The large  $R_w$  value of 0.205 is typical of models without a nearly complete In occupancy of BCO and such models are far poorer.

From these results for trial models, the main features of atomic ordering were deduced and further refinement was made based on minor changes to model 5 (for example, models 9, 8, 11, 6 and 14). Each model gave very similar coordinates for the atoms. The calculated structure factors showed three reflections with poor agreement between  $F_o$  and  $F_c$  for all models. Inspection of the raw diffractometer data for these

| Model<br>No. | Composition<br>ratio<br>In : Mn | Numbers of In<br>atoms in<br>A IT/OT/OH/CO<br>B IT/OT/OH/CO* | <i>R</i> "† | Comments                                                                                                                                                                                                                                           |
|--------------|---------------------------------|--------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1            | 13:39                           | 4/0/0/0<br>0/0/0/9                                           | 0-139       | B of AIT increased to $\sim 4.0 \text{ Å}^2$ indicating unsuitable choice of In in AIT. Model resembles Al <sub>4</sub> Cu <sub>9</sub> -type atomic ordering.                                                                                     |
| 5            | 12:40                           | 0/0/0/0<br>0/0/0/12                                          | 0.103       | Model resembles $Al_4Cu_9$ ordering without any large<br>In atoms in <i>AIT</i> . <i>B</i> of <i>BOH</i> was considerably<br>smaller (0.26 Å <sup>2</sup> ) than for other sites, and <i>B BCO</i><br>had the largest value (1.3 Å <sup>2</sup> ). |
| 12           | 12:40                           | 0/0/0/2<br>0/0/0/10                                          | 0.115       | Model shares In between ACO and BCO. B of ACO becomes largest of any site. B of BOH remains the smallest.                                                                                                                                          |
| 2            | 12:40                           | 0/0/6/0<br>0/0/0/6                                           | 0.205       | Example of model with relatively small occupation<br>of <i>BCO</i> by In and with remaining In placed in<br><i>AOH</i> . <i>B</i> of <i>AOH</i> increased to $4.8 \text{ Å}^2$ .                                                                   |
| 9            | 13:39                           | 0/0/0/0<br>0/0/1/12                                          | 0.092       |                                                                                                                                                                                                                                                    |
| 8            | 14:38                           | 0/0/0/0<br>0/0/2/12                                          | 0.084       | B of BOH and BCO became the largest values<br>suggesting perhaps too much In, consistent with<br>an In stoichiometry higher than expected.                                                                                                         |
| 11           | 13:39                           | 0/0/0/0<br>0/0/2/11                                          | 0.086       |                                                                                                                                                                                                                                                    |
| 6            | 13:39                           | 0/0/0/0<br>0/0/3/10                                          | 0.087       |                                                                                                                                                                                                                                                    |
| 14           | 12:40                           | 0/0/0/0<br>0/0/2/10                                          | 0.089       |                                                                                                                                                                                                                                                    |

#### Table 2. Results of some trial ordering models for InMn<sub>3</sub>

\* The remainder of the sites contain Mn to make up a 52-atom unit cell. † Unit weights were used; all 422 reflections were included.

### Table 3. Structural data for InMn<sub>3</sub> (anisotropic temperature factor refinement, $R_w = 0.044$ )

Figures in parentheses are standard errors in the last digits quoted as derived in the least-squares refinement.

| Cluster |                          |             |             |            | B (Ų) or     |              |              |              |              |              |
|---------|--------------------------|-------------|-------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|
| and     | Point                    |             |             |            | $\beta_{11}$ | $\beta_{22}$ | $\beta_{33}$ | $\beta_{12}$ | $\beta_{13}$ | $\beta_{23}$ |
| site    | set                      |             | x           | Z          |              |              | (×           | 104)         |              |              |
| AIT     | 4( <i>e</i> ) <i>xxx</i> | 4 Mn        | 0.0953 (3)  |            | 0.86 (5)     |              |              |              |              |              |
| BIT     | 4(e) xxx                 | 4 Mn        | 0.5975 (3)  |            | 0.90 (5)     |              |              |              |              |              |
| AOT     | 4(e) xxx                 | 4 Mn        | -0.1595 (3) |            | 0.70 (5)     |              |              |              |              |              |
| BOT     | 4(e) xxx                 | 4 Mn        | 0.3380 (3)  |            | 0.75 (5)     |              |              |              |              |              |
| AOH     | 6(f) 00z                 | 6 Mn        | 0           | 0.3390 (4) | 22 (3)       | 22           | 29 (3)       | 4 (2)        | 0            | 0            |
| BOH     | $6(g) \frac{11}{22}z$    | 4 Mn + 2In  | 0.5         | 0.8609 (3) | 26 (2)       | 26           | 50 (3)       | 6 (2)        | 0            | 0            |
| ACO     | 12(i) xxz                | 12 Mn       | 0.2868 (2)  | 0.0636 (3) | 31 (2)       | 31           | 33 (2)       | -3(2)        | -5 (2)       | -5           |
| BCO     | 12(i) xxz                | 1 Mn + 11In | 0.8124 (1)  | 0.5455 (1) | 42 (1)       | 42           | 21 (1)       | -18 (1)      | -5 (1)       | -5           |

# Table 4. Principal axes of the ellipsoids of thermalmotion as calculated from the OH and CO anisotropictemperature factors

| Site             | Root-mean-square<br>displacements<br>along principal<br>axes (Å) | Directions* of principal axes<br>with respect to<br>cell axes <i>a,b,c</i> (°) |       |        |  |  |  |  |
|------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------|-------|--------|--|--|--|--|
| AOH              | 0.1139                                                           | 90                                                                             | 90    | 0      |  |  |  |  |
| 00 <i>z</i>      | 0.1070                                                           | 45                                                                             | 45    | 90     |  |  |  |  |
|                  | 0.0907                                                           | 45                                                                             | 135   | 90     |  |  |  |  |
| ACO              | 0.1318                                                           | 66.25                                                                          | 66.25 | 145-29 |  |  |  |  |
| xxz              | 0.1232                                                           | 45                                                                             | 135   | 90     |  |  |  |  |
|                  | 0.1009                                                           | 54.46                                                                          | 54.46 | 55.29  |  |  |  |  |
| BOH              | 0.1493                                                           | 90                                                                             | 90    | 0      |  |  |  |  |
| $\frac{11}{22}z$ | 0.1212                                                           | 45                                                                             | 45    | 90     |  |  |  |  |
|                  | 0.0950                                                           | 45                                                                             | 135   | 90     |  |  |  |  |
| BCO              | 0-1643                                                           | 45                                                                             | 135   | 90     |  |  |  |  |
| xxz              | 0.1151                                                           | 55.80                                                                          | 55.80 | 127.35 |  |  |  |  |
|                  | 0.0837                                                           | 64.60                                                                          | 65.60 | 37.35  |  |  |  |  |

\* The directions of all principal axes in the OH sites are fixed by symmetry constraints. In the CO sites, the direction of one principal axis is constrained.

# Table 5. Observed and calculated structure factors forInMn3

The six  $F_o$  assigned to be zero and the three marked with an asterisk were not included in the refinement for reasons given in the text. For the remaining 419 reflections  $R_w = 0.044$  (unit weights) using the model parameters quoted in Table 3.

| DKI F. F.                             | hkl F. F.         | hkIF.F.       | nk I Fo Fe      | hki F. F.       | hki FaFa      | nk I Fo Fe    | hki Fe Fe                  | nki F.F.      | nk   Fe Fe                |
|---------------------------------------|-------------------|---------------|-----------------|-----------------|---------------|---------------|----------------------------|---------------|---------------------------|
|                                       | 0 215 18 14       | 078 ¥ 20      | 1 213 10 11     | 1 413 15 13     | 2 314 19 37   | 1 110 18 48   | 1 421 42 41                |               | 5 8 8 M 42                |
| 002 14 10                             | 0 1 1 /11 /11     |               | 1 214 43 44     | 1 7 7 1 10 1 13 | 2 4 4 162 157 | 2 911 19 10   | 3 412 19 17                | 4 810 13 10   | 3 8 9 41 40               |
| 0 0 1 1574277                         | 0 1 1 13 4        | 0 710 10 15   | 1 213 20 20     | 1 7 8 80 91     | 245 75 77     | 2 412 28 25   | 1411 10 15                 | • • • • • •   | 1 810 17 18               |
|                                       | 0 1 1 <b>20 1</b> | 0 111 12 27   | 1 3 3 15 10     | 1 2 4 10 33     | 2 + + 120 122 | 21010 42 10   | 3 7 7 24 10                | 4 412 13 7    | 3 811 67 63               |
| 003 0 12                              | 0 3 8 143 112     | 0 712 21 19   | 1 3 4 60 17     | 1 710 45 47     | 2 4 7 44 12   | 21011 23 26   |                            |               |                           |
| 0 0 6 780 766                         | 0 1 / 44 42       | 0 71 1 10 11  | 1 1 1 1 2 12    | 1 711 26 26     |               | 1 1 1 21 1 1  | 1 710 11 20                |               |                           |
| 0 0 7 13 10                           |                   | 0 0 0 100 103 | 1 3 1 10 20     | 1 23 24 12      | 2 110 105 105 | 1 1 1 1 1 1 1 | 1 211 12 14                |               | 11010 40 25               |
| 005 170 170                           | 0 100 11 1        |               |                 |                 | 2 411 19 19   | 1 1 6 796 799 | 1 22 2 2                   | . 710         |                           |
| 0 010 103 104                         | 0 111 62 60       | 9 411 141 141 |                 |                 | 2 412 47 44   | 1 3 1 41 41   | 1 21 1 14 10               | A 711 12 14   |                           |
| 0 011 154 152                         | 0 112 14 11       | 0 412 10 12   | 110 57 58       | 1 810 61 67     | 2 412 15 15   | 1111111       | 3 6 6 121 122              | • nz n n      |                           |
| 9 012 34 32                           | 0 11 12 14        |               | 1 111 12 10     | INI D D         | 2 414 27 12   | 1 1 1 13 28   | 1                          |               |                           |
| 0 01 2 20 20                          | 0 114 14 45       | 0 10 18 17    | 1 112 14 15     | 1 412 27 27     | 2 1 1 101 100 | 3 310 26 22   | 3 810 23 21                |               | 6 610 W 40                |
| 0 014 0 12                            |                   | 3 911 54 57   | 1 313 32 48     | 1 9 9 45 47     | 236 88 90     | 3 30 1 10 10  | 3 833 108 334              | 4 830 57 58   | + 411 W M                 |
| 0 011 14 14                           | 0.65 20 18        | 0 912 10 10   | 1 324 39 37     | 1 110 14 12     | 25710010      | 1 112 43 44   | 5 812 25 27                | + 631 % M     | 6 612 Ba 22               |
| 0 1 1 22 23                           |                   | 01010 0 7     | 1               | 1.402.04.4      | 2 S B B/ B    | 3 31 3 10 37  | 1 * * 42 43                |               |                           |
| 0 1 2 44 45                           |                   | 01011 13 3    | 1.4.3 74 44     | 1 912 13 5      | 111100        | 5 52+ 1+ 14   | 3 410 60 57                |               |                           |
| 01144 76                              |                   | 111 2 2       |                 | 11010 21 14     | 2 10 42 43    | 111 2 2       | 1010 24 13                 |               | 110 M M                   |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0 +10 22 20       | 1 1 1 101 14  | 1               | 1111111         | 1 112 11 12   |               | NOL1 13                    | +1010 119 117 | 6 711 /0 16               |
| 0 1 0 40 41                           | 0 411 18 14       | 1             |                 | 223 49 14       | 1 51 1 44 44  | 1             |                            | 3 3 3 196 112 | + 112 +4 H                |
|                                       | 0 -12 -3 -4       | 1 1 3 40 47   | 1 10 112 113    | 1 1 4 104 102   | 2 314 33 12   |               | 111 2 20 20                |               |                           |
|                                       | 0 41 3 20 14      | 1 1 1 10 10   | 1 811 31 38     | 2 2 3 142 143   | 2.4.4.112.14  | 3             |                            | 3 5 7 70 40   |                           |
| 011 70 70                             | 0 414 37 37       | 1.1.7.115.110 | 1 412 31 31     | 2 2 4 154 158   | 2.6.1.62.62   | 3 410 11 1    | 4 4 7 177 182              |               | 6 610 15 33               |
| 0 110 12 11                           | 0 1 1 101 101     | 118 3 7       | 1 413 74 76     | 2 2 7 42 44     | 268 18 18     | 1411 40 10    |                            | 1 5 1 51 63   | • Bit 52 52               |
| 0 111 12 11                           | 016 16 16         | 111 1 10 10   | 1.414 14 1      | 2 2 8 in7 in1   | 2             | 1 422 24 25   |                            | 1 110 71 24   | *** #2 18                 |
| 0 112 17 19                           | 0 5 7 61 63       | 1 110 104 104 | ( ) ) ( )) ( )) | 2.5.4.118.117   | 2 610 61 62   | 3 413 44 62   | 4 410 47 42                | 5 521 36 17   | + +10 51 52               |
| 0 22 3 54 34                          | 0 3 8 40 41       | 1 223 44 44   | 1.5.6 (30.137   | 2 210 178 115   | 2.411.12.12   | 3 4 14 28 24  | + +11 22 18                | N NEZ NE 🖬    | 2 2 2 102 113             |
| 0 114 11 0                            |                   | 1 112 14 14   |                 | 1 11 11 11      | 2.414 1.1     |               | 4 417 54 51<br>4 417 12 14 |               |                           |
| 0 115 45 42                           | 0 120 18 17       | 1 111 42 43   |                 | 2 213 12 14     | 111 12 13     |               |                            |               | 1 10 10 10                |
| 0 2 3 21 12                           | 0 518 20 28       | 1 116 63 62   | 1 10 16 18      |                 |               | 111.0         |                            |               | 1 711 30 18               |
| 2 / 1 1 1                             | 0 313 19 10       | 11 8 3        | 1 311 33 32     | 11100 04        | 1             | 111 1 1 1     |                            |               |                           |
| ais n n                               | 0 315 56 11       | 1 2 3 147 144 | 1 312 33 34     | 2.3.6. 33 36    | 1 10 28 24    | 1 510 14 13   | A 3 7 104 107              | 1 610 18 19   | 7                         |
|                                       | 0                 |               | 1 311 30 37     | (1)             | 1 10 16 10    | 3 311 43 44   |                            | 1 612 107 101 | 2 410 41 42               |
| 0 2 7 15 14                           | 0 0 1 12 1        | 1 2 5 56 55   | 1 524 64 62     | 2 1 8 23 70     | 2 14 2 28 29  | 1 512 19 20   | 4 5 9 92 94                | 5 612 60 40   | 7 8 9 53 55               |
| 2 2 4 117 116                         |                   |               | 1               | 2.5.7.105.105   | 7 113 13 10   | 1 11 1 41 40  | • 10 10 11                 | 5 823 50 67   | 910 32 29                 |
| 0 2 9 17 10                           | 0 6 9 13 16       | 1 2 1 271 200 | 1 6 7 19 60     | 2 1 8 61 61     | 2 2 2 2 2 2   | 1 114 10 40   | + 331 12 64                | 11110         | 6 6 6 126 129             |
| 0 310 110 123                         | 0 +10 +0 +7       |               | 1 4 4 44 55     | 214 11 10       | 7             | 3             | 6 SL2 10 15                |               | 4 4 10 10 10              |
| 0 211 57 59                           | 0.011 11 11       | 1 2 4 101 103 |                 | 1 110 42 42     | 1 810 40 40   | 111 11 12     |                            |               | 6 610 0 10<br>6 9 9 77 70 |
| a na 15 52                            | 0 617 49 52       | 1 210 -0 70   |                 | 2 11. 13 12     | 2 112 12 15   |               |                            |               |                           |
| 2 23 34 55                            | 0.11 0 1          | 212 40 40     |                 | 2 10 1 10 10    | 2 4 4 1 1 10  | 1410 - 12     |                            | 1 10 10 10    |                           |
| 2 (14 14 14                           | 0                 |               |                 |                 |               |               |                            |               |                           |

three reflections showed large background variations over their scan ranges. These three reflections, 002, 003, and 022, were therefore considered to be unreliable and they were removed from further refinement, leaving 419 reflections. Refinements using unit weights and isotropic temperature parameters led to  $R_w$  values of 0.071 for model 6, 0.073 for 11, 0.074 for 14, and 0.077 for 8. A detailed survey with changes in steps of one In atom on *BOH* and *BCO* left models 6 and 11 as favoured.

Anisotropic temperature factors<sup>\*</sup> were then introduced, since it has been pointed out that significant anisotropic thermal motions of OH and CO atoms may exist in  $\gamma$ -brass structures (Brandon, Brizard, Chieh, McMillan & Pearson, 1974). Model 11 with anisotropic temperature factors for AOH, ACO, BOH and BCO sites emerged as the favoured model.  $R_w$  was 0.044 for 419 reflections and unit weights. This may be compared to the isotropic model which had refined to  $R_w = 0.073$  with unit weights.

Table 3 gives the refined parameters for the final model. Table 4 gives an analysis of the principal axis magnitudes and directions for the anisotropic thermal parameters. The observed and calculated structure factors are in Table 5. Table 6 lists the coordination polyhedra for atoms in each crystallographic site with the interatomic distances.

#### Discussion

# (a) The P cell and the new type of $\gamma$ -brass atomic ordering for InMn<sub>3</sub>

These single-crystal diffraction experiments have shown that  $InMn_3$  has a  $\gamma$ -brass-type arrangement of atoms with a *P* cell. This *P* cell was apparently not evident in the two previous powder diffraction studies, and the importance of applying single-crystal methods

In Mna

<sup>\*</sup> The form of the anisotropic temperature factor for each atom is  $T = \exp\left[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{23}kl + 2\beta_{13}hl)\right].$ 

in our current analyses of  $\gamma$ -brass-type phases is stressed.

Compared to previously known P-cell y-brasses such as Cu<sub>2</sub>Al<sub>4</sub> (von Heidenstam, Johansson & Westman, 1968; Westman, 1965; Arnberg & Westman, 1978) and  $\gamma_1$ -Cu<sub>9</sub>Ga<sub>4</sub> (Stokhuyzen, Brandon, Chieh & Pearson, 1974), the atomic ordering in InMn<sub>3</sub> is unique. Whereas the  $Cu_{9}Al_{4}$  P-cell structure has its larger Al atoms at a composition of 30.8 at.% ordered in BCO and AIT, InMn<sub>3</sub> has its large In atoms at a composition of 25.0 at.% ordered predominantly in BCO and partially in BOH. Why these two different ordering schemes would occur among P-cell  $\gamma$ -brass structures can be understood in terms of packing efficiencies at the respective radius ratios of the two elements and in terms of maximizing the number of In-Mn neighbours while minimizing the number of In-In neighbours in the structure. [Details are presented below in (c).]

# (b) Interatomic distances and compulsory contacts in InMn<sub>3</sub>

Table 6 shows that interatomic distances involving BCO are generally larger because of the occupancy of this site by larger In atoms. The same is true to some extent for BOH which was found to have a mixed occupancy by In and Mn atoms. These observed distances are therefore compatible with the atomic ordering.

Owing to the unique ordering and large relative size differences of atoms in InMn<sub>3</sub>, those contacts between atoms on different site sets which are compressed are somewhat different from those in other  $\gamma$ -brasses (Brandon, Brizard, Pearson & Tozer, 1977), as Table 6 shows. In contrast to the I-cell y-brasses and other Pcell examples with radius ratios closer to unity, the A clusters in InMn<sub>3</sub> do not contact each other along  $\langle 100 \rangle$ , as shown by the distinct lack of any compressions in AOH-AOH' distances. Whereas the AOH atom at 00z has two close BCO neighbours along +[110] in a plane perpendicular to [001], it is relatively free of close contacts along [001] and somewhat free along  $\pm$ [110] (these directions are specified with respect to an origin at the AOH atom). Hence we can understand the observed directions of the major and minor principal axes of the AOH anisotropic temperature factor (see Table 4). At first sight, the BOH-BOH' compressed contact would seem to be the result of interactions between two B clusters along  $\langle 100 \rangle$ type directions. However, the fact that BOH does not have close contact with either BIT or BOT suggests that the pressure is not transferred into the core of the B cluster, and the BOH atom at  $\frac{11}{22}z$  may be relatively free to move along -[001], constrained only by the BOH' atom along +[001] and four BCO atoms in a plane perpendicular to [001]. When BOH is statistically occupied by a smaller Mn atom, the BOH-BOH' atom

## Table 6. Interatomic distances (Å) in $InMn_3$ for the coordination shells about each atom

Numbers in parentheses are deviations from hard-sphere CN 12 radii sums.

A primed atom symbol is used to indicate a contact to an atom in a neighbouring cluster where this distinction is not obvious from the A and B cluster designation. Estimated standard errors are  $\sim 0.03$  Å.

|             |                      | Cluster 2              | 4                  | Cluster B                     |                       |                  |  |  |
|-------------|----------------------|------------------------|--------------------|-------------------------------|-----------------------|------------------|--|--|
| Number<br>3 | AIT (N<br>AIT<br>AOT | In) to<br>2∙54<br>2∙55 | (-0.03)<br>(-0.02) | BIT (M:<br>BIT<br>BOT         | n) to<br>2.60<br>2.59 | (0·03)<br>(0·02) |  |  |
| 3           | AOT                  | 2·33<br>2·62           | (0.02)             | BOH                           | 2.39                  | (0.02)<br>(0.11) |  |  |
| 3<br>3<br>3 | ACO                  | 2.02                   | (0.00)             | BCO                           | 2.91                  | (-0.01)          |  |  |
|             | AOT (                | Mn) to                 |                    | BOT (M                        | In) to                |                  |  |  |
| 3           | AIT                  | 2.55                   | (-0.02)            | BIT                           | 2.59                  | (0.02)           |  |  |
|             | AOH                  | 2.72                   | (0.15)             | BOH                           | 2.86                  | (0.17)           |  |  |
| 3<br>3<br>3 | ACO                  | 2.70                   | (0.13)             | BCO                           | 2.80                  | (-0.12)          |  |  |
| 3           | BCO                  | 2.80                   | (-0.12)            | ACO                           | 2.67                  | (0.10)           |  |  |
|             | AOH (                | Mn) to                 |                    | $BOH\left(\frac{2}{3}\right)$ | $Mn + \frac{1}{3}Ir$  | n) [Mn+]         |  |  |
| 2           | AIT                  | 2.62                   | (0.05)             | BIT                           | 2.80                  | (0.11)           |  |  |
| 2           | AOT                  | 2.72                   | (0.15)             | BOT                           | 2.86                  | (0.17)           |  |  |
| 1           | AOH'                 | 3.03                   | (0.34)             | BOH'                          | 2.62                  | (-0.20)          |  |  |
| 4           | ACO                  | 2.81                   | (0.24)             | BCO                           | 3.01                  | (-0.03)          |  |  |
| 2           | BCO                  | 2.73                   | (0-19)             | ACO                           | 2.93                  | (0.14)           |  |  |
| 2           | BCO                  | 3.17                   | (0.25)             | ACO                           | 3.42                  | (0.73)           |  |  |
|             | ACO (                | Mn) to                 |                    | $BCO(\frac{1}{12})$           | $Mn + \frac{11}{12}$  | In) [In+]        |  |  |
| 1           | AIT                  | 2.57                   | (0.00)             | BIT                           | 2.91                  | (-0.01)          |  |  |
| 1           | AOT                  | 2.70                   | (0.13)             | BOT                           | 2.80                  | (-0.12)          |  |  |
| 1           | BOT                  | 2.67                   | (0.10)             | AOT                           | 2.80                  | (-0.12)          |  |  |
| 2           | AOH                  | 2.81                   | (0.24)             | BOH                           | 3.01                  | (-0.03)          |  |  |
| 1           | BOH                  | 2.93                   | (0.24)             | AOH                           | 2.73                  | (-0.19)          |  |  |
| 1           | BOH                  | 3.42                   | (0.73)             | AOH                           | 3.17                  | (0.25)           |  |  |
| 2           | ACO                  | 2.97                   | (0.30)             | BCO                           | 3.56                  | (0.30)           |  |  |
| 2           | BCO                  | 2.86                   | (-0.06)            | ACO                           | 2.99                  | (0.07)           |  |  |
| 2           | BCO                  | 2.99                   | (0.07)             | ACO                           | 2.86                  | (-0.06)          |  |  |
| 2           | ACO'                 | 4.19                   | (1.62)             | BCO'                          | 3.64                  | (0.38)           |  |  |

is not in compression; when BOH is statistically occupied by a larger In atom, the In atom could sit closer to the centre of the *B* cluster and contact *BIT* and *BOT* atoms. These ideas explain why the anisotropic thermal ellipsoid of the *BOH* atom at  $\frac{11}{22}z$  has its major principal axis along [001], and they also suggest how the *BOH* site might be an appropriate one in the InMn<sub>3</sub> structure to accommodate a mixture of In and Mn atoms, perhaps even at the expense of completely filling *BCO* with the available In atoms at this composition.

# (c) Reasons for stability of InMn<sub>3</sub> with the observed P cell and atomic ordering

Our previous predictions, that the packing fraction would be dominant and that it would control the ordering of the atoms at a radius ratio as disparate as 1.3, were based on an understanding of the factors that determine the type of  $\gamma$ -brass cell and the ordering of the atoms therein. Placing the larger In atoms in *BOH*  and BCO maximizes the packing fraction (Fig. 1) and we assumed an I cell since the packing-fraction calculations were carried out for this cell, it being too complicated to attempt the calculation for a P cell. In fact, going from the I cell to the P cell reduces the number of

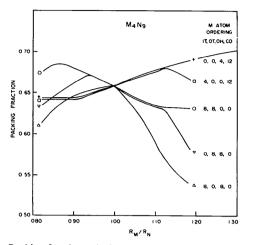



Fig. 1. Packing fraction calculated as a function of radius ratio for  $\gamma$ -brasses with the *I* cell at a composition  $M_4N_9$ . At large radius ratios the packing fraction is improved by ordering the larger atoms in *OH* and *CO* sites.

contacts for the large In atoms with themselves and increases the number of unlike In-Mn contacts as Table 7 shows (the same was shown to be true at a composition  $M_4N_9$ ; Brandon, Brizard, Pearson & Tozer, 1977) and both of these effects further increase the stability of the structure. Hence it is not surprising that InMn<sub>3</sub> has a *P* rather than an *I* cell, a point which we did not consider at the time of our predictions. Nevertheless, the new type of ordering was correctly predicted for InMn<sub>3</sub>.

# (d) Re-evaluation of Reynolds's high-temperature powder data for $\gamma$ -Cu–In

The discovery of a unique atomic ordering and a P cell for the  $\gamma$ -In-Mn phase led us to examine the possibility that the high-temperature  $\gamma$ -Cu-In powder diffraction data (Reynolds, 1952) might be consistent with a P cell and with the InMn<sub>3</sub> type of atomic ordering which has larger In atoms in CO and OH sites of one cluster. Indeed, if the  $\gamma$ -Cu-In data were not consistent with such a model, one would be faced with the problem of understanding why  $\gamma$ -In-Mn and  $\gamma$ -Cu-In were different with practically the same radius ratio.

Reynolds's original powder intensity data are contained in Table 8 along with the values of  $N = h^2 + k^2$ 

Table 7. Ordering of M atoms and number of neighbours per cell for a selection of  $M_x N_y$  structures with I or P cells

| Number | x : y | Cell<br>type | Ordering of <i>M</i> atoms                              | Weighted nur<br>M-M | nber of neigh<br>N-N | bours per cell<br>M-N           | Average number<br>of <i>M</i> - <i>N</i> contacts<br>per <i>M</i> atom |
|--------|-------|--------------|---------------------------------------------------------|---------------------|----------------------|---------------------------------|------------------------------------------------------------------------|
| 1      | 16:36 | Р            | 4 in <i>AIT</i>                                         | 6                   | 102                  | 150                             | 9.38                                                                   |
| 2      |       |              | 12 in <i>BCO</i><br>4 in <i>BOH</i><br>12 in <i>BCO</i> | 9 <del>1</del>      | 117 <del>1</del>     | $131\frac{1}{3}$                | 8.21                                                                   |
| 3      | 13:39 | Р            | 1 in <i>AIT</i><br>12 in <i>BCO</i>                     | 38                  | 132 <del>8</del>     | 125 <u>1</u>                    | 9.63                                                                   |
| 4      |       |              | 4<br>9                                                  | 6                   | $130\frac{1}{2}$     | 121 <sup>1</sup> / <sub>2</sub> | 9-35                                                                   |
| 5      | 13:39 | Ι            | 4 in <i>OH</i><br>9 in <i>CO</i>                        | 14 <u>11</u>        | $151\frac{5}{12}$    | $91\frac{2}{3}$                 | 7.05                                                                   |
| 6      |       |              | 2<br>11                                                 | 14 <del>5</del>     | 150 <u>1</u>         | 92 <del>§</del>                 | 7.14                                                                   |
| 7      |       |              | 0 13                                                    | 14 <u>1</u>         | $148\frac{7}{12}$    | 95 <u>1</u>                     | 7.33                                                                   |
| 8      | 13:39 | Р            | 1 in <i>BOH</i><br>12 in <i>BCO</i>                     | $2\frac{1}{12}$     | $137\frac{1}{12}$    | 1185                            | 9.14                                                                   |
| 9      |       |              | 2                                                       | 4                   | $139\frac{1}{2}$     | $114\frac{1}{2}$                | 8.81                                                                   |
| 10     |       |              | 11<br>3                                                 | 5 <del>3</del>      | $141\frac{3}{4}$     | $110\frac{1}{2}$                | 8.50                                                                   |
| 11     |       |              | 10<br>4                                                 | 7 <del>1</del>      | 1435                 | 106 <del>ફ</del>                | 8.22                                                                   |
| 12     |       |              | 9<br>5                                                  | 8 <u>3</u>          | 145 <u>3</u>         | $103\frac{1}{2}$                | 7.96                                                                   |
| 13     |       |              | 8<br>6<br>7                                             | 10                  | 147 <u>1</u>         | 100 <u>1</u>                    | 7.73                                                                   |

+  $l^2$  adopted in the cubic indexing. These measurements were obtained from a sample containing 29.6 at.% In exposed to Ni-filtered Cu radiation at 923 K in a 190 mm Unicam high-temperature camera. Reynolds noted four extra lines which could be assigned N values for the Cu  $K\bar{\beta}$  wavelength. These same N values (18, 36, 46 and 48) matched up with 'strong' or 'medium strong' lines for the Cu  $K\bar{a}$  wavelength and the explanation for these four extra lines in the cubic powderpattern indexing is quite acceptable. Among all the remaining lines, two classed as 'very weak' require odd values of N (9 and 129) to fit the cubic indexing. These two very weak lines might now indeed be seen as evidence of a primitive cubic lattice (P cell) for  $\gamma$ -Cu–In since the archetype I cell could only produce lines with N even.

A computer program was written to calculate powder diffraction line intensities  $I_c(N)$  for cubic  $\gamma$ brass-type structure models. The usual structure factor calculations were made for a model structure and inverse Lorentz and polarization factors were applied in order to generate calculated intensities which could be compared to Reynolds's visual estimates from films. Multiplicity factors were assigned for the different classes of *hkl* values concerned and intensities were

added for superposed powder lines. The resulting  $I_c(N)$ were scaled onto a range from 0 to 100. In the calculation of structure factors, an overall temperature factor  $B_{a}$  was treated as an adjustable parameter of the model structure. From experience, agreement was improved between calculated and observed powder intensities at both high and low scattering angles when  $B_{o}$ was negative, suggesting that considerable absorption was present in the observed data. This finding is consistent with Reynolds's remarks concerning observed shifts in line positions attributed to absorption in the sample. We were not able to apply realistic inverse absorption corrections without more details of experimental conditions such as sample size etc., so we chose instead to allow  $B_{a}$  to become negative if necessary to partially compensate for lower observed relative intensities at low angles due to absorption.

Powder line intensities  $I_c(N)$  were then calculated for allowed cubic N values from 1 to 134 for a P-cell model with composition In<sub>4</sub>Cu<sub>9</sub> (30.77 at.% In) and with 12 In in BCO, 2 in BOH and 2 in AOH. Coordinates like those for  $\gamma$ -InMn<sub>3</sub> in Table 3 were used and  $B_o$  was set  $\sim -0.2$  Å<sup>2</sup>. The results appear in Table 8. Among all the N-odd lines,  $I_c(9) = 5.6$  was the largest (greater than the second largest by a factor of  $\sim$ 2) and it corresponds

Table 8. High-temperature powder diffraction line intensities as observed and as calculated for y-Cu-In models

|             |             | I <sub>c</sub>            |                                         | •          |     |                           |                             | Ν        |     | <i>I</i> c<br>InMn <sub>3</sub> | I <sub>c</sub><br>Cu <sub>9</sub> Al₄ | N     |             | I.<br>InMn3 | <i>I</i> c<br>Cu₀Al₄ |
|-------------|-------------|---------------------------|-----------------------------------------|------------|-----|---------------------------|-----------------------------|----------|-----|---------------------------------|---------------------------------------|-------|-------------|-------------|----------------------|
| N<br>(even) | I_ <b>*</b> | InMn <sub>3</sub><br>type | Cu <sub>9</sub> Al <sub>4</sub><br>type | N<br>(odd) | I,* | lnMn <sub>3</sub><br>type | Cu <sub>9</sub> Al₄<br>type | (even)   | I,* | type                            | type                                  | (odd) | <i>I</i> _* | type        | type                 |
| • •         | •0          |                           |                                         |            | -0  |                           |                             |          | -0  | 1.3                             | 0.8                                   | 69    | 0           | 0.1         | 0.4                  |
| 2           |             | 0.2                       | 0.3                                     | 1          |     | 0.5                       | 0·7<br>0·2                  | 68<br>70 |     | 0.0                             | 1.0                                   | 09    |             | 0.1         | 0.4                  |
| 4           |             | 0.1                       | 0.8                                     | 3          |     | I∙6<br>2∙7                | 0.2                         | 70       | m   | 0.0<br>2.6                      | 1.0                                   | 73    |             | 0.5         | 0.6                  |
| 6           |             | 0.8                       | 1.0                                     | 5          |     |                           |                             | 72       | m   | 0.9                             | 0.8                                   | 75    |             | 0.3         | 0.0                  |
| 8           |             | 0.4                       | 0.9                                     | 9          | UW  | 5.6                       | 14.1                        |          |     | 1.3                             | 2.3                                   | 75    |             | 0.2         | 0.0                  |
| 10          |             | 2.6                       | 0.0                                     | 11         |     | 0.8                       | 0.0                         | 76       |     | 1.3                             | 2.3<br>1.0                            |       |             | 0.2         | 0.3                  |
| 12          | w           | 8.5                       | 13.3                                    | 13         |     | 0.2                       | 0.3                         | 78       |     | 0.0                             | 0.5                                   | 81    |             | 0.6         | 0.7                  |
| 14          | w           | 8.5                       | 6.7                                     |            |     |                           |                             | 80       |     | 0.0                             | 0.5                                   | 81    |             | 0.0         | 0.7                  |
| 16          |             | 0.5                       | 0.0                                     | 17         |     | 1.3                       | 1.4                         | 82       |     |                                 |                                       |       |             | 0.0         | 0.3                  |
| 18          | vs          | 96.3                      | 92.5                                    | 19         |     | 0.5                       | 0.7                         | 84       |     | 0.4                             | 0.3                                   | 85    |             | 0.1         | 0.0                  |
| 20          |             | 1.3                       | 1.0                                     | 21         |     | 0.1                       | 0.2                         | 86       |     | 0.9                             | 0.3                                   | 00    |             | 0.4         |                      |
| 22          | m           | 6.3                       | 6.9                                     | 25         |     | 0.5                       | 0.5                         | 88       |     | 0.5                             | 0.5                                   | 89    |             | 0.4         | 1.2                  |
| 24          |             | 3.1                       | 1.3                                     | 27         |     | 0.7                       | 1.7                         | 90       | w   | 2.2                             | 0.7                                   | 91    |             | 0.1         | 0.5                  |
| 26          | w           | 3.6                       | 3.6                                     | 29         |     | 0.3                       | 0.2                         | 94       |     | 0.4                             | 0.9                                   | 93    |             | 0.1         | 0.1                  |
| 30          | w           | 2.0                       | 5.1                                     |            |     |                           |                             | 96       |     | 0.3                             | 0.3                                   | 97    |             | 0.1         | 0.4                  |
| 32          |             | 0.1                       | 0.9                                     | 33         |     | 1.7                       | 3.1                         | 98       | w   | 3.7                             | 3.9                                   | 99    |             | 0.3         | 0.3                  |
| 34          |             | 1.6                       | 0.9                                     | 35         |     | 0.5                       | 0.1                         | 100      |     | 0.4                             | 0.4                                   | 101   |             | 0.2         | 0.4                  |
| 36          | m           | 6.1                       | 6.1                                     | 37         |     | 0.0                       | 0.0                         | 102      | w   | 1.5                             | 1.7                                   |       |             | ~ .         | ~ ·                  |
| 38          |             | 3.1                       | 1.1                                     |            |     |                           |                             | 104      |     | 0.7                             | 0.5                                   | 105   |             | 0.4         | 0.5                  |
| 40          |             | 0.0                       | 0.0                                     | 41         |     | 0.7                       | 1.0                         | 106      |     | 0.8                             | 0.6                                   | 107   |             | 0.2         | 0.0                  |
| 42          |             | 0.3                       | 0.2                                     | 43         |     | 0.2                       | 0.3                         | 108      | w   | 2.5                             | 2.3                                   | 109   |             | 0.0         | 0.5                  |
| 44          | m           | 1.0                       | 0.3                                     | 45         |     | 0.2                       | 0.2                         | 110      |     | 1.2                             | 1.2                                   | 113   |             | 0.3         | 0.9                  |
| 46          | m           | 3.3                       | 4.2                                     |            |     |                           |                             | 114      | ms  | 5.9                             | 4.8                                   | 115   |             | 0.2         | 0.2                  |
| 48          | m           | 4.8                       | 4.7                                     | 49         |     | 0.5                       | 1.3                         | 116      |     | 0.2                             | 0.3                                   | 117   |             | 0.1         | 0.2                  |
| 50          | vw          | 2.7                       | 3.3                                     | 51         |     | 0.3                       | 0.8                         | 118      |     | 1.6                             | 2.9                                   |       |             |             |                      |
| 52          |             | 0.7                       | 0.3                                     | 53         |     | 0.1                       | 0.1                         | 120      | w   | 2.0                             | 1.6                                   | 121   |             | 0.5         | 1.3                  |
| 54          | 5           | 14-7                      | 13.5                                    |            |     |                           |                             | 122      |     | 1.3                             | 1.2                                   | 123   |             | 0.0         | 0.3                  |
| 56          |             | 0.9                       | 0.6                                     | 57         |     | 0.3                       | 0.3                         | 126      | ms  | 8.9                             | 5.9                                   | 125   |             | 0.1         | 0.1                  |
| 58          |             | 0.8                       | 0.4                                     | 59         |     | 0.2                       | 0.5                         | 128      | w   | 2.5                             | 2.9                                   | 129   | vw          | 1.2         | 2.0                  |
| 62          |             | 1.9                       | 1.2                                     | 61         |     | 0.2                       | 0.3                         | 130      |     | 1.2                             | 0.8                                   | 131   |             | 0.2         | 0.4                  |
| 64          |             | 0.4                       | 0.2                                     | 65         |     | 0.3                       | 0.7                         | 132      | w   | 2.3                             | 2.2                                   | 133   |             | 0.1         | 0.1                  |
| 66          | ms          | 6.7                       | 7.8                                     | 67         |     | 0.0                       | 0.0                         | 134      | w   | 3.8                             | 3.7                                   |       |             |             |                      |

\* Visually estimated intensities as assigned by Reynolds (1952): vs = very strong; s = strong; ms = medium strong; m = medium; w = weak; vw = very weak.

to one of the two observed lines in Reynolds's data that required N odd for cubic indexing.  $I_c(129) = 1.2$  is the largest calculated value in the high-angle region for Nodd (the sixth-largest N-odd line in the entire pattern) and it corresponds to the other N-odd line recorded by Reynolds. Other N-odd lines with  $I_c(N)$  values between these two  $[I_c(5) = 2.7, I_c(33) = 1.7, I_c(3) = 1.6, I_c(17)$ = 1.3] were not observed by Reynolds presumably because they occur in the forward scattering region where absorption effects are larger and the threshold of observability corresponds to larger  $I_c$  values. As examples which are consistent with this presumption we see (i) that N = 9 at 5.6 in the low-angle region and N = 129 at 1.2 in the high-angle are both just barely observable and have the same 'very weak' label, (ii) that low-angle N = 12 at 8.5 and some six high-angle lines with N > 100 at an average 2.4 all have the same 'weak' label, and (iii) that the low-angle N = 10 line at 2.6 falls below the low-angle observability threshold. When considering agreement for N-even lines we find N= 18 at 96.3 matching the strongest observed line. Minor discrepancies remain such as why lines N = 24and 38 were not observed whereas line N = 30 was, but this variation among generally weak lines which do calculate as weak is not of too great concern.

The very low value  $I_c(44) = 1.0$  which Reynolds classified as 'medium' appears to be a more serious deficiency. However, we can explain it as a Cu  $K\bar{\beta}$  component associated with the second-strongest line in the pattern which was indexed as N = 54 for the Cu  $Ka_1$ wavelength.\* This  $\beta$  assignment was not noticed by Reynolds because the N = 44 choice happens to adequately match the Cu  $K\bar{\alpha}$  wavelength. Our model for the structure leads us to suggest instead that this should be interpreted as a  $\beta$  line, and the very small calculated  $I_c(44)$  value is no longer inconsistent with the observations. The observation of line N = 102 when  $I_c(102)$ calculates rather small can similarly be explained as a  $\beta$ component arising from the 'medium strong' N = 126line.

Thus it is a fair interpretation that  $\gamma$ -Cu–In does indeed have a *P* cell like  $\gamma$ -InMn<sub>3</sub>, and calculated intensities for InMn<sub>3</sub>-type ordering of the In and Cu atoms are not inconsistent with the intensities reported by Reynolds (1952) subject to the remarks above. Whether this ordering gives significantly better agreement than  $Al_4Cu_9$ -type ordering is difficult to say with the visually estimated data available. One may cite, however, that  $I_{obs}$  and  $I_c(N)$  for the low-angle reflections N = 9, 12 and 14 would favour the model with InMn<sub>3</sub> rather than  $Al_4Cu_9$  type of ordering (Table 8).

This work was made possible through financial support provided by the National Research Council of Canada. One of the authors (HSK) gratefully acknowledges scholarship support from the University of Waterloo. We are also grateful to Dr J. W. Christian FRS, for supplying a copy of Reynolds's diffraction data for the  $\gamma$ -Cu–In phase.

#### References

- AOYAGI, K. & SUGIHARA, M. (1962). J. Phys. Soc. Jpn, 17, 1072–1073.
- ARNBERG, L. & WESTMAN, S. (1978). Acta Cryst. A34, 399-404.
- BOOTH, M. H., BRANDON, J. K., BRIZARD, R. Y., CHIEH, C. & PEARSON, W. B. (1977). Acta Cryst. B33, 30–36.
- BRANDON, J. K., BRIZARD, R. Y., CHIEH, P. C., MCMILLAN, R. K. & PEARSON, W. B. (1974). Acta Cryst. B30, 1412– 1417.
- BRANDON, J. K., BRIZARD, R. Y., PEARSON, W. B. & TOZER, D. J. N. (1977). Acta Cryst. B33, 527–537.
- BRANDON, J. K., PEARSON, W. B., RILEY, P. W., CHIEH, C. & STOKHUYZEN, R. (1977). Acta Cryst. B33, 1088-1095.
- HANSEN, M. (1958). Constitution of Binary Alloys, 2nd ed., pp. 850–852. New York: McGraw-Hill.
- HEIDENSTAM, O. VON, JOHANSSON, A. & WESTMAN, S. (1968). Acta Chem. Scand. 22, 653–661.
- International Tables for X-ray Crystallography (1968). Vol. III, 2nd ed., pp. 210–216. Birmingham: Kynoch Press.
- International Tables for X-ray Crystallography (1969). Vol. I, 3rd ed., pp. 316, 324, 330. Birmingham: Kynoch Press.
- KIM, H. S. (1979). PhD Thesis, Univ. of Waterloo (to be published).
- PEARSON, W. B., BRANDON, J. K. & BRIZARD, R. Y. (1976). Z. Kristallogr. 143, 387–416.

REYNOLDS, J. (1952). Thesis, Oxford Univ., pp. 84-92.

- STOKHUYZEN, R., BRANDON, J. K., CHIEH, P. C. & PEARSON, W. B. (1974). Acta Cryst. B30, 2910–2911.
- WESTMAN, S. (1965). Acta Chem. Scand. 19, 1411-1419.
- ZWICKER, U. (1950). Z. Metallkd. 41, 399-400.

<sup>\*</sup> The  $Ka_1$  to  $K\bar{\beta}$  wavelength ratio 1.54056/1.39222 = 1.1066 is matched well by the ratio of sines for the reported  $\theta$  angles sin (37.999°)/sin (33.853°) = 1.1052.